3.229 \(\int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=79 \[ \frac {8 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

8/3*a^2*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d/sec(d*x
+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {3809, 3804} \[ \frac {8 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]

[Out]

(8*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]*Sin[c +
 d*x])/(3*d*Sqrt[Sec[c + d*x]])

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3809

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*m), x] + Dist[(b*(2*m - 1))/(d*m), Int[(a + b*C
sc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 a \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} (4 a) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {8 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 50, normalized size = 0.63 \[ \frac {2 a (\cos (c+d x)+5) \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\sec (c+d x)+1)}}{3 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2)/Sec[c + d*x]^(3/2),x]

[Out]

(2*a*(5 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(3*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 69, normalized size = 0.87 \[ \frac {2 \, {\left (a \cos \left (d x + c\right )^{2} + 5 \, a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

2/3*(a*cos(d*x + c)^2 + 5*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c
) + d)*sqrt(cos(d*x + c)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(3/2)/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 1.56, size = 71, normalized size = 0.90 \[ -\frac {2 \left (\cos ^{2}\left (d x +c \right )+4 \cos \left (d x +c \right )-5\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} a}{3 d \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x)

[Out]

-2/3/d*(cos(d*x+c)^2+4*cos(d*x+c)-5)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^2*(1/cos(d*x+c))^(3/2)/sin
(d*x+c)*a

________________________________________________________________________________________

maxima [A]  time = 0.57, size = 38, normalized size = 0.48 \[ \frac {{\left (\sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 9 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/3*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2*d*x + 1/2*c))*sqrt(a)/d

________________________________________________________________________________________

mupad [B]  time = 1.41, size = 70, normalized size = 0.89 \[ \frac {a\,\cos \left (c+d\,x\right )\,\left (10\,\sin \left (c+d\,x\right )+\sin \left (2\,c+2\,d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}}{3\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(3/2)/(1/cos(c + d*x))^(3/2),x)

[Out]

(a*cos(c + d*x)*(10*sin(c + d*x) + sin(2*c + 2*d*x))*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*
x))^(1/2))/(3*d*(cos(c + d*x) + 1))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)/sec(d*x+c)**(3/2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(3/2)/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________